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Exact calculation of the spatiotemporal correlations in the Takayasu model
and in the q model of force fluctuations in bead packs
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We calculate exactly the two point mass-mass correlations in arbitrary spatial dimensions in the aggregation
model of Takayasu. In this model, masses diffuse on a lattice, coalesce upon contact, and adsorb unit mass
from outside at a constant rate. Our exact calculation of the variance of mass at a given site proves explicitly,
without making any assumption of scaling, that the upper critical dimension of the model is 2. We also extend
our method to calculate the spatiotemporal correlations in a generalized class of models with aggregation,
fragmentation, and injection, which include, in particular, theq model of force fluctuations in bead packs. We
present explicit expressions for the spatiotemporal force-force correlation function in theq model. These can
be used to test the applicability of theq model in experiments.

PACS number~s!: 05.70.Ln, 05.65.1b, 45.70.2n, 92.40.Fb
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I. INTRODUCTION

It is well established that interacting many-body noneq
librium systems, evolving via the dynamics of their micr
scopic degrees of freedom, can reach a large variety
steady states in the limit of large time. Among these ste
states, those characterized by power-law distributions of
ferent physical quantities, over a wide range of parame
space, have received a lot of attention in the last decade.
phenomenon of the emergence of power-law distribu
steady states without fine tuning of external parameters
been dubbed self-organized criticality~SOC! @1#. The con-
cept of SOC has been very useful in understanding s
invariance in a large number of physical systems includ
sand piles, driven interfaces, river networks, and ea
quakes. One of the early models of SOC is the mass ag
gation model proposed by Takayasu@2#. This simple lattice
model describes a system in which masses diffuse, coal
upon contact, and adsorb unit mass from outside at a c
stant rate. In the limit of large time, the mass distributi
evolves into a time-independent form with a power-law t
for large mass, in all dimensions. This time-independ
mass distribution was computed exactly in one dimens
and within mean-field theory@2#. The appearance of
power-law distribution without fine tuning of parameters a
the fact that the power law exponent can be computed
actly makes the Takayasu model~TM! one of the simplest
analytically tractable models of SOC.

TM also has close connections@3# to other models of
statistical mechanics such as the Scheidegger river netw
model @4#, the directed Abelian sandpile model@5#, and the
voter model@6#. TM is exactly equivalent to Scheidegger
river model, which had been proposed to explain theor
cally the observed drainage patterns of river catchment a
in particular Hack’s law that relates the catchment area to
length of the river@7#. Though more sophisticated mode
have been proposed to explain Hack’s law, Scheidegg
model is a simple stochastic model that explains the law w
fair accuracy. In the case of the directed Abelian sand
PRE 621063-651X/2000/62~3!/3186~11!/$15.00
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model the probability of having an avalanche of sizem turns
out to be identical to the mass distributionP(m) in the TM.
The voter model space-time trajectory is very similar to th
of the TM except that the processes proceed in the oppo
direction in time. Thus, a complete solution of the TM wou
also help in understanding these related models better.

There has been a recent revival of interest in the TM
simple modifications of the model led to the understand
of a variety of systems including force fluctuations in gran
lar media such as bead packs@8#, various aspects of rive
networks@9#, particle systems in one dimension with lon
range hops@10#, and generalized mass transport models@11#.
In addition, two other natural generalizations of the TM we
found to display nontrivial nonequilibrium phase transitio
in the steady state@12,13#.

Even though the single-site mass distribution function
the TM has been computed exactly in one-dimension an
the mean-field limit, the spatial and temporal correlatio
between masses have remained an open question. In
Takayasu and Takayasu, in their recent review article@14#,
have commented on the difficulty of computing the spa
mass-mass correlation function both analytically and num
cally. In this paper, we calculate exactly both the spatial a
temporal mass-mass correlation functions in the TM in
dimensions. The calculation of the variance of mass in
dimensions also settles rigorously that the upper critical
mension of the TM, beyond which the mean-field expone
are correct, is 2.

Our technique can also be used to calculate the spatio
poral two-point correlations in a class of models that a
generalizations of the TM. In particular we calculate exac
the two-point force-force correlation function in theq model
of force fluctuations in bead packs@8,15#. If experiments can
be devised to measure these spatiotemporal correlation
bead packs, then our exact results would be useful for c
parison.

The paper is organized as follows. In Sec. II, we defi
the TM and briefly review the earlier results on this mod
We also review the known results for theq model of force
fluctuations in bead packs and then summarize our main
3186 ©2000 The American Physical Society
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sults. In Sec. III, we study the spatiotemporal correlations
the TM in one dimension. In Sec. III A, we compute exac
the equal-time mass-mass correlations between two poin
space for all times. We also perform a Monte Carlo simu
tion to compute this correlation function numerically a
find excellent agreement between numerical and exact
sults. In Sec. III B, we solve exactly the temporal autocor
lation and derive its large time behavior. In Sec. IV, w
study the spatiotemporal mass-mass correlations in arbit
dimensions. In Sec. V, we study exactly the spatiotempo
correlations in the generalizedq model. We present the ex
plicit results for the correlation functions in theq-model
when the distribution of transmitted fractions of weights a
uniform. We also provide numerical evidence for the equ
time correlations. Finally, we conclude in Sec. VI with
summary and outlook.

II. MODEL AND RESULTS

A. Takayasu model

For simplicity we define the TM on a one-dimension
lattice with periodic boundary conditions. Generalization
higher dimensions is straightforward. Each site of the latt
has a nonnegative mass variable. Given a certain config
tion of masses at timet, the system evolves via the followin
dynamics. Evolution at each discrete time step consists
two moves:~1! with probability 1/2 each mass hops to i
right and with probability 1/2 it stays at the original site a
~2! a unit mass is added to each site. The first move co
sponds to the diffusion of masses while the second m
corresponds to injection of unit masses from outside. If
diffusion move~1! results in two masses coming to the sam
site, then the total mass at the site simply adds up. Thus
evolution of the masses is described by the stochastic e
tion,

mi~ t11!5mi~ t !~12r i !1mi 21~ t !r i 2111, ~1!

where ther i ’s are independent and identically distribute
random variables taking values 0 or 1 with equal probabi
1/2, andmi is the mass at sitei. While the first move~1!
tends to create big masses via diffusion and aggregation
second move~2! replenishes the lower end of the mass sp
trum. The competition between the two, leads in the lo
time limit, to a time-independent single-site mass distrib
tion with a power-law tail for large mass. This happens ir
spective of the initial condition. For convenience, one c
start from an initial configuration that has zero mass at e
site.

Note that the dynamics of the TM defined above is pa
lel, i.e., all sites are updated simultaneously in every ti
step. Alternately one could define the model in continuo
time where the mass at every site hops to the right with
p and injection of unit masses at every site occurs with r
1. It turns out that the large distance and long time behav
of the TM are insensitive to the particular type of dynam
used. This is in contrast to other recently studied general
mass models@10,11# where the steady-state mass distributi
depends nonuniversally on the type of dynamics. It turns
that while the parallel version of the TM is convenient f
establishing the mapping to other models, the continu
n
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time version is sometimes easier for the purpose of calc
tions. We will therefore use either of the two version
whichever is more convenient in a particular situation. F
example, in one dimension we will calculate the mass-m
correlation function with parallel dynamics, while for arb
trary dimensionsd, we will use the continuous time versio
as significant simplifications occur in that case.

We now briefly review the earlier results on the TM
Takayasu and co-workers@2,14# originally showed that the
probability P(m,t) that a site has massm at time t ap-
proaches a time-independent form in the long time limit
→`. This time-independent distribution was shown to ha
a power-law tail,;m2t for largem and the exponentt was
computed exactly@2# in d51 (t1d54/3) and within mean-
field theory (tm f53/2). It was also shown that for largem
and large but finitet, the distribution satisfies a scaling form
@16,17#

P~m,t !;
1

mt
f S m

td D , ~2!

where the exponentd is related tot via the simple scaling
relation d51/(22t) @17#. Recently Swiftet al. @18# have
argued that ind spatial dimensions,t52(d11)/(d12) for
d,2 andt53/2 for d.2. In d52, they argued that in the
limit t→`, P(m);m23/2(logm)1/2 for large m indicating
that 2 is the upper critical dimension of the TM. It is als
known @2# that the power-law distribution of mass is stab
with respect to fluctuations in the initial conditions and
insensitive to whether the particles hop symmetrically
space or not.

While the single-site mass distribution in the TM
known analytically as mentioned above, the spatiotempo
correlations between masses are far from being underst
Recently Takayasu and Takayasu have pointed out that w
there exist spatial correlations in TM, they are difficult
compute not only analytically but even numerically@14#. In
addition there is no rigorous derivation of the upper critic
dimensiondc of the model. While equivalence with the vote
model would predictdc52 @5#, early numerical simulations
@2# suggesteddc54. The argument of Swiftet al. @18# that
dc52 is also not rigorous as it relied on a scaling ansatz
the age distribution of particles, which looked plausible b
was not proved.

B. The q model of force fluctuations

The q model was proposed@15,8# as a simple scala
model to understand the distribution of forces observed
real three-dimensional bead packs@15#. This model assumed
that the force chains observed in experiments were du
inhomogeneity in packing leading to unequal distribution
weights supported by a bead. Ignoring the spatial corre
tions between inhomogeneities, the model considered a r
lar lattice of sites, each containing a bead of mass unity.
total weight on a given bead at a layer is transmitted r
domly to 2 nearby beads in the layer underneath~In the
original version of the model,N adjacent beads were consid
ered!. Let m( i ,t) be the weight supported by a bead at siti
at deptht ~t is the layer index!. Then the transmission o
weights can be represented via the stochastic equation,
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3188 PRE 62R. RAJESH AND SATYA N. MAJUMDAR
~1!, where it is assumed, for convenience, that the succes
layers in thet direction are shifted by one lattice unit to th
right. The injection term one represents the weight of a b
itself ~assuming that all beads have the same weight un!
andr i represents the fraction of the weight that is transmit
from a given bead to its descendent in the next layer to
right. The only difference with the TM is that, in theq
model, r i ’s are independent and identically distributed ra
dom variables drawn from a uniform distribution over@0,1#.
Indeed one can study a general stochastic equation suc
Eq. ~1!, where r i ’s are independent and identically distrib
uted random variables drawn from a general distributionf (r )
over @0,1# @8#. TM is a special case withf (r )5 1

2 d r ,0
1 1

2 d r ,1 . Similarly theq model with uniform distribution is
another special case whenf (r )51.

For distributions of the formf (r )5r n(12r )n/B(n11,n
11) @wheren is a positive integer andB(m,n) is the Beta
function#, Coppersmithet al. showed@8# that the joint prob-
ability distribution of the normalized weight variables,v i
5mi /t, factors in the limit t→`, i.e., P(v1 ,v2 ,v3 . . . )
5) i P(v i) as t→`. The uniform distribution falls in this
category as it corresponds ton50. Thus the correlations
between normalized weights vanishes in thet→` limit and
the single point weight distribution was shown to be,P(v)
5a(n)vn11exp(22nv) for all v, wherea(n) is independent
of v @8#. Experiments on bead packs measured the fo
distribution on the bottom layer of the pack (t→`) and the
results were found to be in agreement with theq-model re-
sults withn50, i.e., with uniform distribution,f (r )51 @15#.

While the spatial correlations between the normaliz
weights vanish in thet→` limit, they are expected to be
nonzero at finite deptht. We will show later that Claudin
et al. @19# stated incorrectly that for the uniform distribution
the correlation is zero at any finite depth. Claudinet al. also
calculated@19# the equal-depth correlation function in a co
tinuum version of theq model for generic distribution of the
fractions and found a rather structureless correlation fu
tion. This is not surprising because they made the assu
tion that the beads are massless. Our exact calculation fo
discreteq model in this paper shows that for nonzero be
mass, the equal-depth correlation function has a very in
esting scaling behavior characterized by a universal sca
function that is independent of initial conditions for sho
ranged initial conditions. Besides, we also compute exa
the nontrivial temporal correlations between masses in
vertical direction. These temporal correlations have not b
computed for theq model before.

C. New results

The new results that we obtain in this paper can be s
marized as follows:

~1! For the TM, we calculate exactly the equal-tim
mass-mass correlation functionC(r ,t)5^m0(t)mr(t)&
2^m0(t)&^mr(t)& between two spatial points separated by
distancer in all dimensions. We show that in the scalin
limit r→`, t→` but keeping r /At fixed, C(r ,t)
52tgG(r /At), whereg52 for d,2 andg5(32d/2) for
d.2 and the scaling function depends ond. In d52, there
are additional logarithmic corrections. Ind51, we also com-
pute the scaling functionG(y) explicitly.
ive
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~2! Puttingr 50 limit in the explicit expression forC(r ,t)
allows us to compute the on-site variance,^m2(t)& exactly.
For larget, we find ^m2&;t (41d)/2 in d,2, ^m2&;t3/log t
in d52, and ^m2&;t3 in d>3. For d51, this result was
already derived by Takayasuet al. @2# but for dÞ1 it is a
new result. This therefore proves rigorously, without any
sumption of scaling, that the upper critical dimension~be-
yond which mean-field exponents are correct! of the TM is
dc52.

~3! We also study exactly the normalized unequal tim
correlation function,

Ar~ t,t!5^X0~ t !Xr~ t1t!&/A^X0
2~ t !&^Xr

2~ t1t!&,

whereXr(t)5mr(t)2^mr(t)&, in all dimensions in the TM.
The normalized autocorrelation function is obtained by p
ting r 5t/2 in Ar(t,t). This is because each mass in the T
has a net drift velocity equal to 1/2 to the right. We show th
the autocorrelation functionAt/2(t,t);t2d/2h(t/t) in the
scaling limit, t→`, t→` but keepingt/t finite. In d51,
we derive the scaling functionh(y) explicitly.

~4! We also calculate exactly the correlations betwe
forces at two different points~both equal depth and unequ
depth! in the q model@8# of force fluctuations in bead pack
for arbitrary distributions of the fractions of weights. The
correlations have so far not been measured experiment
But if experiments can be performed in the future, then o
exact results will be useful for validation of theq model.

III. CORRELATIONS IN ONE DIMENSION

In this section, we calculate exactly the spatiotempo
correlation function in the TM in one dimension. Eve
though the evolution equation for the single point probabil
distribution of massP(m,t) involves the joint two-point
probability distribution functionP(m1 ,m2 ,t), the evolution
equation for the two-point correlation involves only oth
two point correlation functions. This simplifying aspe
makes the correlation function analytically tractable in t
TM.

The parallel dynamics of the TM in one dimension~1D! is
represented by the stochastic equation~1!, namely, mi(t
11)5mi(t)(12r i)1mi 21(t)r i 2111. If r i51 at timet, the
massmi at site i jumps to its right neighbor whiler i50
indicates that it stays at sitei. The hopping of the mass at sit
i to i 11 is described by the first term while the second te
accounts for the mass ati 21 hopping onto sitei. The last
term 1 indicates the injection of unit mass from outside
every time t. Averaging Eq.~1! over all possible histories
~starting from a zero-mass initial configuration! we immedi-
ately get^m&(t)5t.

A. Equal-time correlations in one dimension

The evolution equation for the equal-time correlati
function between two space pointsi and j can be written
down by multiplying Eq.~1! by mj (t11) and then taking an
average over all possible histories. Due to the translatio
invariance in an infinite lattice, this correlation function d
pends only on the differenceu i 2 j u. Denotingx5 i 2 j and
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using the translational invariance, we find the connected
of the correlation function at timet, Cx(t)5^m0(t)mx(t)&
2t2, obeys the equation,

Cx~ t11!5
1

4
~Cx1112Cx1Cx21!

1
1

4
~C01t2!~2dx,02dx,12dx,21!. ~3!

In obtaining the above equation, we have used the fact thr i
andmj at timet are independent of each other for alli andj.
Equation~3! can be solved exactly for arbitrary initial con
dition by the generating function method. It turns out, ho
ever, that the solution at large timet becomes asymptotically
independent of the initial condition as long as the initial co
dition is short ranged. Without any loss of generality, w
therefore start from the simplest initial condition when t
mass is 0 at every site. LetF(q,u)5(x51

` ( t50
` Cx(t)q

xut.
Multiplying Eq. ~3! by qxut and summing overx and t, one
can expressF(q,u) in terms of C̃1(u)5( t50

` C1(t)ut and

C̃0(u)5( t50
` C0(t)ut. C̃1(u) can further be expressed i

terms ofC̃0(u) from Eq.~3! by puttingx50, multiplying by
ut and summing overt. Thus, finally we get the following
expression forF(q,u),

F~q,u!5
q@u2~11u!~12q!22~12u!4C̃0~u!#

~12u!3@4q2u~11q!2#
, ~4!

whereC̃0(u) is yet to be determined. We determineC̃0(u)
by noting that F(q,u) has two poles q1,25(22u
62A12u)/u. For positive values ofu, uq1u.1 while uq2u
,1. This would imply that for fixed time,Cx(t) will blow
up exponentially asuq2u2x for largex. Since this cannot hap
pen, the numerator on the right-hand side of Eq.~4! must
also vanish atq5q2 in order to cancel the pole. This imme
diately determinesC̃0(u),

C̃0~u!5
u~11u!~12A12u!

~12u!7/2
. ~5!

Substituting C̃0(u) in Eq. ~4!, the generating function
F(q,u) is then fully determined,

F~q,u!5
2u~11u!

~12u!3 (
n51

` S uq

~11A12u!2D n

. ~6!

Let us denoteC̃x(u)5( t50
` Cx(t)u

t. The coefficient ofqx for
x>1 can be easily pulled out from Eq.~6! to yield

C̃x~u!5
2u~11u!

~12u!3

ux

~11A12u!2x
. ~7!

Note that it is evident from the above expression thatCx(t)
50 for x>t.

In order to derive the explicit expressions forCx(t) for
x>0, we need to invert the discrete Laplace transfor
rt

-

-

s

C̃x(u). We first deriveC0(t) explicitly by computing the
coefficient ofut in the expression ofC̃0(u) in Eq. ~5!,

C0~ t !5
2t~2t11!~4t11!

4t15

~2t !!

~ t! !2
2t2. ~8!

This therefore gives us an exact expression for the on-
mass varianceC0(t) for all t. Taking the larget limit in Eq.
~8! we get,

C0~ t !5
16t5/2

15Ap
1O~ t2!. ~9!

We note that since Eq.~2! implies that^m2&;t (32t)/(22t),
we gett54/3 in one dimension. This therefore constitutes
alternate method to derivet54/3 in one dimension.

In order to deriveCx(t) for x.0, we need to calculate th
coefficient ofut on the right-hand side of Eq.~7!. For arbi-
trary x, this is somewhat hard. However it is easy to der
the asymptotic behavior ofCx(t) for largex and larget but
keepingx/At fixed. By takingu→1 limit in Eq. ~7! and after
a few steps of algebra, we find that in this scaling limit

Cx~ t !52t2G~x/At !, ~10!

where the scaling functionG(u) is universal, i.e., indepen
dent of the initial condition as long as the initial condition
short ranged and is given by

G~y!532E
y

`

dx1E
x1

`

dx2E
x2

`

dx3E
x3

`

dx4 erfc~x4!. ~11!

The complementary error function is defined as, erfc(y)
5(2/Ap)*y

`exp(2x2)dx. The above integrals can be done
derive an explicit expression for the scaling function,

FIG. 1. The figure shows the scaling plots of the equal-ti
correlation function,Cx(t)5^m(0,t)m(x,t)&2t2 obtained from nu-
merical simulation of the TM on a one-dimensional lattice of 10
sites. The data for five different times collapse onto a single sca
curve that matches very well with the analytical scaling functi
given by Eq.~12!.



a
In
th
le
h
b

la

l

ion

re
e

co

al-

q.

on

te

he
site
ht
re-
e
.
en

a,

3190 PRE 62R. RAJESH AND SATYA N. MAJUMDAR
G~y!5
1

3 F ~3112y214y4!erfc~y!2
2

Ap
y~512y2!e2y2G .

~12!

We also performed a numerical simulation of the TM on
one-dimensional lattice with periodic boundary condition.
Fig. 1, we show the scaling plot of the connected part of
correlation function. The data at different times, when sca
as in Eq.~10! collapse onto a single scaling function, whic
is in excellent agreement with the analytical result given
Eq. ~12!.

B. Temporal correlations in one dimension

In this section we compute exactly the two-time corre
tions in the TM in one dimension. Let us first defineXx(t)
5mx(t)2^mx(t)&5mx(t)2t. We then define the genera
two-time correlation function asDx(t,t)5^X0(t)Xx(t1t)&.
It is also useful to define the normalized two-time correlat
function,

Ax~ t,t!5
^X0~ t !Xx~ t1t!&

A^X0
2~ t !&^Xx

2~ t1t!&
. ~13!

Clearly then, Ax(t,t)5Dx(t,t)/AC0(t)C0(t1t) where
C0(t) is just the on-site mass variance whose exact exp
sion is given by Eq.~8! of the previous section and we hav
also used the translational invariance of the equal-time
relation function. Thus we just need to evaluateDx(t,t)
which can be done exactly as follows.

From Eq.~1!, it is easy to show that the functionDx(t,t)
evolves as a function oft for fixed t as,

Dx~ t,t11!5 1
2 @Dx~ t,t!1Dx21~ t,t!#, ~14!

starting from the initial conditionDx(t,0)5Cx(t), where
Cx(t) is the equal-time correlation function computed
ready in the previous section. Let H(k,t,t)
5(x52`

` Dx(t,t)eikx. Note that here we used thex summa-
tion from 2` to ` as opposed to 0 tò . This is because
Dx(t,t) is not equal toD2x(t,t) for t.0. They become
equal only fort50 due to translational invariance. From E
~14! we get

H~k,t,t!5H~k,t,0!S 11eik

2 D t

. ~15!

Note thatH(k,t,0)5(x52`
` Cx(t)e

ikx andC2x(t)5Cx(t) as
translational invariance holds for equal-time correlati
functions.

By inverting the Fourier transform in Eq.~15!, we get a
simple expression forDx(t,t) in terms of the equal-time
correlation functions,

Dx~ t,t!5
1

2pE0

2p

dkH~k,t,t!e2 ikx

5
1

2t (
m50

t S t

mDCx2m~ t !. ~16!
e
d

y

-

s-

r-

In order to calculate the autocorrelation function, we no
that in the TM, the masses have a net drift velocity,v51/2
towards the right. This is because of the definition of t
model: in one time step, a mass either stays at its own
with probability 1/2, or hops to the neighbor on the rig
with probability 1/2. Thus, to calculate the proper autocor
lation function, one has to compute it in the moving fram
that is shifting towards the right with uniform velocity 1/2
Hence the correct auto-correlation function would be giv
by Dt/2(t,t). Puttingx5t/2 in Eq.~16! and taking the trans-
form D̃t/2(u,t)5( t50

` Dt/2(t,t)ut, we get

D̃t/2~u,t!5
1

2t F S t

t/2D C̃0~u!12 (
m5t/211

t S t

mD C̃m2t/2~u!G ,

~17!

where we have used the symmetryC̃x(u)5C̃2x(u). Using
the exact expressions forC̃x(u) from Eqs.~5! and~7! of the
previous section in Eq.~17!, and after some steps of algebr
we get

D̃t/2~u,t!5
1

2t S t

t/2D u~11u!

~12u!7/2
2

u~11u!

~12u!3ut/2

1
u~11u!

~12u!5/2ut/2 (
i 50

t/221 S 2i

i D S u

4D i

, ~18!

where we have used the combinatorial identity@20#,

(
j 5n/211

n S n

j D kj5
~11k!n

2
2

kn/2

2 S n

n/2D 2
~12k!~12k!n21

2

3 (
i 50

n/221 S 2i

i D S k

~11k!2D i

. ~19!

In order to analyze Eq.~18!, we first putu512s and note
that the equation allows a scaling limit whens→0 and t
→`, but the productst remains fixed. In terms of time
variables, this scaling limit corresponds tot→`, t→` but
keeping the ratiot/t fixed. In this limit, we find

D̃t/2~s,t!5
1

s3 g1~st!, ~20!

where the scaling function is given by

g1~y!5A8

p F 1

Ay
2Ap

2
ey/2 erfcSAy

2
D G . ~21!

In terms of time variablest and t in the scaling limit,t
→` and t→`, but keepingt/t fixed, we get the following
expression by inverting the Laplace transform in Eq.~20!,

Dt/2~ t,t!5t2F16A 2

15p
A t

t
2h1S t

t D G , ~22!

where
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h1~y!5
~11y/2!2

3p F6sin21S 1

A11y/2
D 2

Ay~1013y!

A2~11y/2!2G .

~23!

Using the above result and the exact larget behavior of
C0(t) from Eq. ~9! in Eq. ~13!, we finally obtain the scaling
behavior of the normalized autocorrelation function in t
scaling limit mentioned above,

At/2~ t,t!5
1

At
hS t

t
D , ~24!

where the scaling function is given by,

h~y!5A2

p

1

~11y!5/4H 12
5A2y

32
~11y/2!2

3F6sin21S 1

A11y/2
D 2

Ay~1013y!

A2~11y/2!2G J . ~25!

The function h(y)→A2/p as y→0 and h(y)
'A(8/49py29/4 asy→`. Thus, for largey, the scaling func-
tion decays as a power law with an exponent 9/4.

We remark that the above scaling behavior holds only
the limit whent→`, t→` but the ratiot/t is kept fixed. In
other limits, it is also possible to investigate the detai
behavior of the autocorrelation function by analyzing the
act equation~18!.

IV. CORRELATIONS IN ARBITRARY DIMENSIONS

In this section we study the two-point spatiotemporal c
relations in the TM in an arbitrary spatial dimensiond. As
mentioned in Sec. II, it turns out that for generald, equations
for the correlations simplify considerably for the continuo
time version of the TM. In this version, every mass ho
with ratep to each of itsd nearest neighbors in the positiv
direction, and aggregates with the mass present at the ho
site. In addition, injection of unit mass occurs at every latt
site with rate 1.

The evolution of the massm(x1 ,x2 , . . . ,xd ,t) in a small
time intervalDt can be represented by the equation,

m~$xi%,t1Dt !5(
j 51

d

r j
2m~x1 , . . . ,xj21, . . . ,xd ,t !

1S 12(
j 51

d

r j
1Dm~$xi%,t !1I ~$xi%,t !,

~26!

wherer i
6’s are independent and identically distributed va

ables, with distributionf (r )5pDtd r ,11(12pDt)d r ,0 and
indicate the hopping events of the particles. The rand
variableI ($xi%,t) denotes the event of injection and is draw
from the distributionP(I )5Dtd I ,11(12Dt)d I ,0 indepen-
dent of ther i

6’s.
n

d
-

-

s

ed
e

m

A. Equal-time correlations

From the Eq.~26! of evolution of the masses, one ca
easily write down the evolution equation for the two-poi
correlation function in continuous time. Multiplying Eq.~26!
at two different space points and neglecting terms of or
O(Dt2) and higher, we find that the two-point correlatio
function C($x%,t)5^m(0, . . . ,0,t)m(x1 , . . . ,xd ,t)&2t2,
evolves as

d

dt
C~$x%!522pdC~$x%!1p(

j 51

d

(
m561

C~x1 , . . . ,xj

1m, . . . ,xd!1dx1,0•••dxd,01p~C~$0%!1t2!

3S 2ddx1,0•••dxd,0

2(
j 51

d

dx1,0•••dxj ,61•••dxd,0D , ~27!

where we have suppressed thet dependence ofC($x%,t) for
notational convenience and also used a translational inv
ance of C($x%,t). The Fourier transform G($k%,t)
5($x%52`

` C($x%)exp(i(j51
d kjxj) then evolves as,

d

dt
G~$k%!52p@G~$k%!2C~$0%!2t2#

3S 2d1(
j 5 i

d

cos~kj !D 11. ~28!

Taking the Laplace transform with respect tot, we get

F~$k%,s!5

s212p@s3g0~s!12#Fd2(
j 51

d

cos~kj !G
s3H s12pFd2(

j 51

d

cos~kj !G J ,

~29!

where F($k%,s)5*0
`G($k%,t)e2stdt and g0(s)

5*0
`C(0, . . . ,0,t)e2stdt, which is yet to be determined

We determine g0(s) by noting that g0(s)
51/(2p)d*0

2p
•••*0

2pF($k%,s)dk1•••dkd . Integrating Eq.
~29! with respect to theki ’s we get the following expression
for g0(s),

g0~s!5
1

s4 S s222s1
2

I ~s! D , ~30!

where

I ~s!5
1

~2p!dE0

2p

dk1•••E
0

2p

dkd

1

s12pFd2(
j 51

d

cos~kj !G .

~31!

The smalls behavior ofI (s) can be easily evaluated b
analyzing the integral in Eq.~31!. We find that ass→0,
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I ~s!;s2(12d/2) for d,2,

;2 log~s! for d52,

;const for d.2. ~32!

SubstitutingI (s) in the expression forg0(s) in Eq. ~30! and
inverting the Laplace transform, we find that the on-site va
ance for larget behaves exactly as,

C~0, . . . ,0,t !;t41d/2 for d,2,

;
t3

log~ t !
for d52,

;t3 for d.2. ~33!

Note that the results in Eq.~33! are exact results for larget
and does not assume any scaling behavior. This result cle
provesrigorously that the upper critical dimension of TM i
dc52.

In addition, if we assume that the on-site mass distribut
scales asP(m,t);m2t f (mt2d) for largem and larget, we
get the following results fort andd. The first moment̂ m&
;t gives d51/(22t) @17#. The second moment scales
^m2&;t (32t)d. Using the exact results for variance from E
~33!, we get t52(d11)/(d12) for d,2, t53/2 for d
.2, andt53/2 in d52 with additional logarithmic correc
tions. These results fort are in agreement with the resul
obtained by Swiftet al. @18# by using a more indirect map
ping to the age distribution of particles in a related reacti
diffusion process and also assuming scaling behavior.

With g0(s) completely determined, we therefore have
exact expression in Eq.~29! for F($k%,s), the joint Laplace-
Fourier transform of the full correlation functionC($x%,t) in
arbitrary dimensions. For arbitraryd, it is complicated to
invert this transform to obtain an exact expression
C($x%,t). However, by analyzing the smalls and smallk
behavior ofF($k%,s), it is easy to see that for largex and
large t, but keepingxt21/2 fixed, C($x%,t) satisfies a scaling
behavior,C($x%,t);tgG($xi /At%) with g52 for d51 and
g5(32d/2) for d.2 and the scaling functionG(y) de-
pends explicitly ond.

For d52, there is additional logarithmic correction an
the scaling breaks down. In this case, the exact expres
for I (s) is given by

I 5
2

p~s14p!
K@4p/~s14p!#, ~34!

whereK is a complete elliptic integral@20#. This gives an
explicit expression forg0(s),

g0~s!5
p~s14p!

s4K@4p/~s14p!#
1

1

s2
2

2

s3
. ~35!

Substituting the expression forg0(s) in Eq. ~29! we get,
i-

rly

n

-

r

on

F~k1 ,k2 ,s!

5
2

s3
2

p~s14p!

s3K@4p/~s14p!#$s12p@22cos~k1!2cos~k2!#%
.

~36!

After some straightforward algebra, it turns out that the la
distance behavior ofC̃(x,y,s)5*0

`C(x,y,t)e2stdt is given
by,

C̃~x,y,s!5
2~s14p!

2s3pK@4p/~s14p!#
K0S rAs

p D , ~37!

where r 5Ax21y2 and K0 is the modified Bessel function
@20#. In order to get an explicit expression ofC(x,y,t) for
larger andt, one needs to invert the Laplace transform giv
by Eq. ~37!. But it is obvious from this expression tha
C(x,y,t) will no longer have a nice scaling form in the larg
distance and long-time limit as in one dimension@see Eq.
~10!# due to the appearance of logarithms in the asympt
behavior of the functionsK(x) andK0(x). This violation of
scaling due to logarithms is again expected since two is
upper critical dimension of the TM.

B. Temporal correlations

We can write down the equations for the time evolution
the temporal correlation function in a manner very similar
that in d51. We define the connected correlation functi
as Dx1 , . . . ,xd

(t,t)5^m0, . . . ,0(t)mx1 , . . . ,xd
(t1t)&2t(t1t).

From the evolution equation of the masses, it is easy to sh
that the functionDx(t,t) evolves as a function oft for fixed
t as,

d

dt
D $x%~ t,t!5pS (

j 51

d

~Dx1 , . . . ,xj 21, . . . ,xd
~ t,t!

2dD$x%~ t,t!!, ~38!

starting from the initial conditionD $x%(t,0)5C$x%(t) where
C$x%(t) is the equal-time correlation function. Le
H($k%,t,t)5($x%52`

1` D $x%(t,t)exp((j50
d ikjxj). From Eq.~38!

we immediately get

H~$k%,t,t!5H~$k%,t,0!expS pt(
j 51

d

~eik j21!D , ~39!

whereH($k%,t,0) is the Fourier transform of the equal-tim
correlation function.

We invert Eq. ~39! to get the temporal correlations i
terms of the equal-time correlation functions,
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D $x%~ t,t!5
1

~2p!dE0

2p

ddkH~$k%,t,t!expS 2 i (
j 51

d

kjxj D ,

5
e2ptd

~2p!dE0

2p

ddkexpS 2 i (
j 51

d

kjxj D
3 (

$x8%52`

`

C~$x8%,t !expS i (
j 51

d

kjxj8D
3expS pt(

j 51

d

eik j D . ~40!

As in d51, there is a net drift velocity,pt, in each for-
ward direction. Hence the correct autocorrelation function
given byD $pt%(t,t). Puttingxj5pt in Eq. ~40!, and simpli-
fying, we get

D $pt%~ t,t!5 (
$m%50

`

C~pt2m1 , . . . ,pt2md!

3e2dpt
~pt!(

j
mj

)
j

mj !

. ~41!

It can then be shown that in the scaling limit,t→`, t→`
but keepingt/t fixed, the normalized autocorrelation fun
tion allows for a scaling solution as ind51,

A$pt%~ t,t!;
1

td/2hS t

t D . ~42!

We do not present the explicit form of the scaling functi
here. It can be shown thath(y)→const. asy→0. Thus in
arbitrary dimensions, the asymptotic decay of the normali
auto-correlation function is given byt2d/2 for larget ~after
taking the larget limit !.

V. CORRELATIONS IN THE q MODEL OF FORCE
FLUCTUATIONS

Theq model of force fluctuations has been defined in S
II B. In this model, the variablesmi evolve in time via the
stochastic equation,mi(t11)5(12r i)mi(t)1r i 21mi 21(t)
11, where the random variablesr i ’s are drawn indepen
dently from a arbitrary distributionf (r ) over the support
@0,1#. Experimental results for the force distribution in re
bead packs were found to be described accurately by thq
model with uniform distributionf (r )51 @15#.

In this section, we calculate exactly the two-point cor
lations betweenmi ’s for the generalizedq model, i.e., for any
arbitrary distributionf (r ). It turns out that the two-point cor
relations are characterized by two parametersm1

5*0
1r f (r )dr and m25*0

1r 2f (r )dr with m1>m2. In the m1

>m2 plane, there are two types of asymptotic behaviors
pending on whetherm15m2 or m1.m2. At every point on
the line m15m2, the correlation function has the same un
versal asymptotic behavior independent of initial conditio
as long as they are short ranged. The special case of the
with m15m251/2 falls within this class. On the other han
s

d

.

l

-

-

s
M

for all points in the planem1.m2, the correlation function
has once again the same universal asymptotic behavio
gardless of the actual values ofm1 andm2 but this behavior
is different from the behavior on the linem15m2. The q
model with uniform distribution corresponds to the poi
m151/2, m251/3 and therefore falls in the second catego

Since the steps of the calculation follow closely that of t
TM, we will skip most of the details and present only th
final results.

A. Equal-time correlations in one dimension

Starting from the stochastic evolution equation@Eq. ~1!#
of masses ind51, it is straightforward to write down the
evolution equation for the equal-time correlation functi
Cx(t)5^m0(t)mx(t)&2t2. We find that for general distribu
tion f (r ), the equal-time correlations evolve as

Cx~ t11!5~m12m1
2!~Cx111Cx21!1~122m112m1

2!Cx

1~m22m1
2!~C01t2!~2dx,02dx,12dx,21!,

~43!

where m15*0
1r f (r )dr and m25*0

1r 2f (r )dr. Note that for
the TM, m151/2 andm251/2 and then Eq.~43! reduces
exactly to Eq.~3! studied in Sec. III A. For the uniform dis
tribution, f (r )51, one gets,m151/2 andm251/3.

We can solve Eq.~43! for arbitrary initial condition and
arbitrary parametersm1 andm2. It turns out that the depen
dence on the initial condition drops out for asymptotica
large t. Following the same steps as in the TM in Sec. III
we find that the Laplace transformsC̃x(u)5( t50

` Cx(t)u
t,

are given exactly by

C̃0~u!5
u~11u!@A11~4a21!u2A12u#

~12u!3g1~u!
, ~44!

C̃x~u!5
2u~11u!

~12u!5/2g1~u!
S A11~4a21!u2A12u

A4au
D 2x

,

~45!

where g1(u)5@(a2b)/bA11(4a21)u1A12u# and a
5m12m1

2 andb5m22m1
2. It is clear from the above ex

pressions that the asymptotic behaviors for larget ~corre-
sponding tou→1) depend on whethera5b, i.e.,m15m2 or
a.b, i.e., m1.m2.

For m15m2, we find, after inverting the Laplace trans
forms, that for larget,

C0~ t !'
32Aa

15Ap
t5/2, t@1, ~46!

Cx~ t !'2t2GS x

A4at
D , x,t@1, ~47!

where the universal scaling functionG(y) is given by Eq.
~12! as calculated for the TM.

For m1.m2, on the other hand, we find for larget,
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C0~ t !'
b

a2b
t2, t@1, ~48!

Cx~ t !'2
b

Aa~a2b!
t3/2G1S x

A4at
D , x,t@1, ~49!

where the universal scaling functionG1(y) is given by

G1~y!5
2

3 S 2e2y2
~11y2!

Ap
2y~312y2!erfc~y!D . ~50!

Note that the uniform distribution corresponds tom151/2
andm251/3, i.e.,a51/4 andb51/12. In Fig. 2, we compare
the numerically obtained scaling plots for the uniform dist
bution with the exact scaling function given by Eq.~50!.

If we define the scaled weightv5m/t as in Ref.@8#, then
the connected part of the two-point correlatio
^v(0,t)v(x,t)&21.2t21/2G1(x/A4at) for large x and t.
Clearly ast→`, the scaled weightv ’s get completely un-
correlated but for finite depth~or time! t, there is a nonzero
anticorrelation specified by the scaling functionG1(u) which
might be possible to measure experimentally. We also p
out that the statement of Claudinet al., @19# that for the
uniform case the correlation is zero at any altitudet, is
clearly incorrect.

We note that from Eq.~43!, one can easily derive th
evolution equation for the correlation function in the co
tinuum space and time. For a proper continuum limit in tim
we need to assume that botha→aDt and b→bDt are of
order Dt. Defining the Fourier transform G(k,t)
5*2`

` C(x,t)eikxdx, one finds from Eq.~43! that for smallk,
the correlation function evolves via the equation,

~] t1ak2!G~k,t !5bk2S E dk8

2p
G~k8,t !1t2D . ~51!

Note that this equation above is identical to the one deri
by Claudinet al. @19# except for the additionalk2t2 term on
the right-hand side of Eq.~51!. The origin of this additional
term can be traced back to the fact that in our case, the b

FIG. 2. The figure shows the scaling plots of the equal-ti
correlation functionCx(t)5^m(0,t)m(x,t)&2t2 obtained from nu-
merical simulation of theq model on a one-dimensional lattice o
1000 sites. The data for five different times collapse onto a sin
scaling curve that matches very well with the analytical scal
function given by Eq.~50!.
nt

,

d

ad

mass is nonzero~equal to 1) as opposed to the zero-ma
case considered in Ref.@19#. As seen from our analysis, fo
nonzero mass, the correlation function has a much more n
trivial and universal structure as opposed to the rather st
tureless correlations found in the zero-mass case in Ref.@19#.

Rescaling time by the factora, one sees that Eq.~51! is
parameterized by the single variablel5b/a. As in the dis-
crete case, there are two possible asymptotic behaviors
pending on the value ofl. Forl51, one finds the Takayas
type behavior and a completely different asymptotic beh
ior emerges for alll,1.

B. Temporal correlations in one dimension

The two-time correlations can similarly be computed f
the q model for any arbitrary distributionf (r ). We present
here only the explicit results for the uniform distribution
d51.

For two-time correlations we use the same notation a
the TM @see Sec. III B#. For the uniform distributionf (r )
51, we find that in the scaling limitt→` and t→`, but
keepingt/t fixed, the normalized autocorrelation function,
defined in Eq.~13!, has the scaling behavior

At/2~ t,t!5
1

At
h2S t

t
D , ~52!

where the scaling function is given by

h2~y!5A2

p

1

3~11y!
@322Ay~y12!3/216y12y2#.

~53!

The scaling functionh2(y)→A2/p as y→0 as in the TM.
For large y also, h2(y) decays as a power law;h2(y)
'A2/9py22 as in the TM but with a different exponent tw
than for the TM exponent 9/4.

C. Results for arbitrary dimensions

Following the similar line of arguments as in the TM, th
evolution equation for the two-point correlation function c
be derived for the generalizedq model in arbitrary spatial
dimension with discrete space and time. The discrete eq
tions are rather complicated but the asymptotic proper
can be easily derived by taking continuum space and t
limit. In the continuum limit, it turns out that as ind51, the
Fourier transform in any dimension G($ki%,t)
5*2`

` C($xi%,t)exp(i(kixi)d
dx evolves by the simple equa

tion ~51! parameterized by the ratiol5b/a, once time is
rescaled bya. The parameterl<1 as in the discrete case. A
in the TM, taking the Laplace transform of Eq.~51! with
respect tot, we find

F~$k%,s!5
lk2@21g0~s!s3#

s3~k21s!
, ~54!

where F($k%,s)5*0
`G($k%,t)e2stdt and g0(s)

5*0
`C(0, . . . ,0,t)e2stdt, which is yet to be determined. A

in the TM, g0(s) is determined by integrating Eq.~54! with

e

le
g
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respect tok. Note that the upper cutoff of eachki integration
is now set by 2p/L whereL is the lattice constant. We find

g0~s!5
2l@12sI~s!#

s3@12l1lsI~s!#
, ~55!

whereI (s)5*ddk/(k21s). The smalls behavior ofI (s) is
the same as given by Eq.~32!.

From Eq.~55! it is clear that there are two different sma
s behaviors ofg0(s) depending on whetherl51 or l,1.
The TM corresponds tol51 and its asymptotic behavior
have already been discussed in detail in Sec. IV. Here
focus onl,1. In that case, using the smalls behavior of
I (s) in Eq. ~55!, it is clear thatg0(s);2l/s3 in any dimen-
sion, indicating thatC(0,0, . . . ,0,t);t2 for larget. Thus for
l,1, contrary to thel51 case~TM!, there is no critical
dimension separating different asymptotic growth
C(0,0, . . . ,0,t).

Substituting this expression forg0(s) in Eq. ~54!, we find
that for smalls

F~$k%,s!'
2lk2

~12l!s3~k21s!
. ~56!

It is then not difficult to derive the asymptotic properties
the correlation function in real space and time. We find,

C~$0%,t !;t2, t@1, ~57!

C~$x%,t !'2t (22d/2)G1S x

At
D , x,t@1, ~58!

whereG1(y) is the dimension dependent scaling function
The most important result of this subsection is that wh

for l51, there is an upper critical dimensiondc52 separat-
ing different asymptotic growth of the on-site variance, the
is no such critical dimension forl,1 ~which includes the
uniform distribution of fractions for theq model!.

VI. SUMMARY AND CONCLUSION

In this paper we have computed exactly both the equ
time as well as the unequal-time two-point correlations in
-

n

.

e

f

e

l-
e

Takayasu model of mass aggregation and injection in
dimensions. We have identified different scaling limits a
obtained the scaling functions explicitly ind51. Our exact
results for the on-site mass variance prove rigorously, w
out any assumption of scaling, that the upper critical dim
sion of the Takayasu model isdc52.

We have also extended our technique to compute exa
the correlations in a larger class of aggregation models w
injection. This generalized model includes, as special ca
the Takayasu model and also theq model of force fluctua-
tions in granular materials. We have shown that the corre
tion functions in this generalized model is parameterized
two variables (m1 ,m2) which are, respectively, the first an
the second moment of the distributionf (r ) of the fractions
r i ’s. We have shown that in the two-dimensional parame
space (m1 ,m2) with m1>m2, there are two types o
asymptotic behaviors of the correlation function depend
on whetherm15m2 or m1.m2. For generic points in the
regionm1.m2, which includes the uniform distribution rep
resented by (1/2,1/3), the correlations have sim
asymptotic behaviors, which is different from that on the li
m15m2, which includes the Takayasu model. Besides,
m1.m2, there is no upper critical dimension in contrast
the casem15m2 where the upper critical dimension isdc
52. We have presented explicit forms of scaling functio
for both the Takayasu line as well as the experimentally
evant uniform distribution case. These exact results will
useful for comparison with possible future experimental
sults on correlations in bead packs.

In this paper we have calculated exactly various tim
dependent correlations between forces in bead packs in
context of the simple scalarq model. There have been var
ous generalizations of this scalar model to include the ten
rial nature of the forces@19,21# and also to noncohesiv
granular materials@22#. It would be interesting to see if ou
method can be extended to calculate the correlations in th
generalized models.

ACKNOWLEDGMENTS

We thank D. Dhar and M. Barma for useful discussion
J.

ev.

at.

S.
@1# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
~1987!.

@2# H. Takayasu, Phys. Rev. Lett.63, 2563~1989!; H. Takayasu, I.
Nishikawa, and H. Tasaki, Phys. Rev. A37, 3110~1988!.

@3# D. Dhar, e-print cond-mat/9909009.
@4# A. E. Scheidegger, Bull. I.A.S.H.12, 15 ~1967!.
@5# D. Dhar and R. Ramaswamy, Phys. Rev. Lett.63, 1659~1989!.
@6# T. M. Liggett, Interacting Particle Systems~Springer-Verlag,

New York, 1985!; R. Durrett,Lecture Notes on Particle Sys
tems and Percolation~Wadsworth, Belmont, 1988!.

@7# P. S. Dodds and D. H. Rothman, Phys. Rev. E59, 4865
~1999!.

@8# S. N. Coppersmith, C.-h. Liu, S. N. Majumdar, O. Naraya
and T. A. Witten, Phys. Rev. E53, 4673~1996!.

@9# A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti, and I. R
,

Iturbe, Phys. Rev. E53, 1510~1996!; M. Cieplak, A. Giacom-
etti, A. Maritan, A. Rinalodo, I. R. Iturbe, and J. R. Banavar,
Stat. Phys.91, 1 ~1998!.

@10# J. Krug and J. Garcia, J. Stat. Phys.99, 31 ~2000!.
@11# R. Rajesh and S. N. Majumdar, J. Stat. Phys.99, 943 ~2000!.
@12# S. N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. R

Lett. 81, 3691~1998!.
@13# S. N. Majumdar, S. Krishnamurthy, and M. Barma, J. St

Phys.99, 1 ~2000!.
@14# M. Takayasu and H. Takayasu inNonequilibrium Statistical

Mechanics in One Dimension, edited by V. Privman~Cam-
bridge University Press, Cambridge, England, 1997!.

@15# C.-h. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith,
Majumdar, O. Narayan, and T. A. Witten, Science269, 513
~1995!.



ta

-

e

,

3196 PRE 62R. RAJESH AND SATYA N. MAJUMDAR
@16# H. Takayasu, M. Takayasu, A. Provata, and G. Huber, J. S
Phys.65, 725 ~1991!.

@17# S. N. Majumdar and C. Sire, Phys. Rev. Lett.71, 3729~1993!.
@18# M. R. Swift, F. Colaiori, A. Flammini, A. Maritan, A. Giacom

etti, and J. R. Banavar, Phys. Rev. Lett.79, 3278~1997!.
@19# P. Claudin, J.-P. Bouchaud, M. E. Cates, and J. P. Wittm

Phys. Rev. E57, 4441~1998!.
t.

r,

@20# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products, 5th ed.~Academic Press, London, 1980!.

@21# M. L. Nguyen and S. N. Coppersmith, Phys. Rev. E59, 5870
~1999!.

@22# J. E. S. Socolar, Phys. Rev. E57, 3204~1998!; M. G. Sexton,
J. E. S. Socolar, and D. G. Schaeffer,ibid. 60, 1999~1999!.


