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Exact calculation of the spatiotemporal correlations in the Takayasu model
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We calculate exactly the two point mass-mass correlations in arbitrary spatial dimensions in the aggregation
model of Takayasu. In this model, masses diffuse on a lattice, coalesce upon contact, and adsorb unit mass
from outside at a constant rate. Our exact calculation of the variance of mass at a given site proves explicitly,
without making any assumption of scaling, that the upper critical dimension of the model is 2. We also extend
our method to calculate the spatiotemporal correlations in a generalized class of models with aggregation,
fragmentation, and injection, which include, in particular, theodel of force fluctuations in bead packs. We
present explicit expressions for the spatiotemporal force-force correlation function inntioelel. These can
be used to test the applicability of tigemodel in experiments.

PACS numbgs): 05.70.Ln, 05.65tb, 45.70—n, 92.40.Fb

[. INTRODUCTION model the probability of having an avalanche of siméurns
out to be identical to the mass distributi®{m) in the TM.

It is well established that interacting many-body nonequi-The voter model space-time trajectory is very similar to that
librium systems, evolving via the dynamics of their micro- of the TM except that the processes proceed in the opposite
scopic degrees of freedom, can reach a large variety dfirection intime. Thus, a complete solution of the TM would
steady states in the limit of large time. Among these stead!S0 help in understanding these related models better.
states, those characterized by power-law distributions of dif- There has been a recent revival of interest in the TM as
ferent physical quantities, over a wide range of parametefimple modifications of the model led to the understanding
space, have received a lot of attention in the last decade. THY @ variety of systems including force fluctuations in granu-

phenomenon of the emergence of power-law distributed®’ Media such as bead pacﬂ&;l, various aspects (.)f rver
etworks[9], particle systems in one dimension with long-

steady states without fine tuning of external parameters hdr%nge hop$10], and generalized mass transport mod#Is.
In addition, two other natural generalizations of the TM were
. . . : . “altbund to display nontrivial nonequilibrium phase transitions
invariance in a large number of physical systems mcIuqun the steady statg12,13.
sand piles, driven interfaces, river networks, and earth-- gyon though the single-site mass distribution function in
quakes. One of the early models of SOC is the mass aggrgxe T\ has been computed exactly in one-dimension and in
gation model proposed by Takayast]. This simple lattice  he mean-field limit, the spatial and temporal correlations
model describes a system in which masses diffuse, coalesggnyeen masses have remained an open question. In fact,
upon contact, and adsorb unit mass from outside at a COMFakayasu and Takayasu, in their recent review arfith,
stant rate. In the limit of large time, the mass distributionhave commented on the difficulty of computing the spatial
evolves into a time-independent form with a power-law tailmass-mass correlation function both analytically and numeri-
for large mass, in all dimensions. This time-independentally. In this paper, we calculate exactly both the spatial and
mass distribution was computed exactly in one dimensionemporal mass-mass correlation functions in the TM in all
and within mean-field theoryf2]. The appearance of a dimensions. The calculation of the variance of mass in all
power-law distribution without fine tuning of parameters anddimensions also settles rigorously that the upper critical di-
the fact that the power law exponent can be computed exmension of the TM, beyond which the mean-field exponents
actly makes the Takayasu moddIM) one of the simplest are correct, is 2.
analytically tractable models of SOC. Our technique can also be used to calculate the spatiotem-
TM also has close connectiof8] to other models of poral two-point correlations in a class of models that are
statistical mechanics such as the Scheidegger river networeneralizations of the TM. In particular we calculate exactly
model[4], the directed Abelian sandpile modé&l], and the the two-point force-force correlation function in tjemodel
voter model[6]. TM is exactly equivalent to Scheidegger’s of force fluctuations in bead pack8,15]. If experiments can
river model, which had been proposed to explain theoretibe devised to measure these spatiotemporal correlations in
cally the observed drainage patterns of river catchment arebead packs, then our exact results would be useful for com-
in particular Hack’s law that relates the catchment area to thearison.
length of the river[7]. Though more sophisticated models  The paper is organized as follows. In Sec. II, we define
have been proposed to explain Hack’s law, Scheidegger'the TM and briefly review the earlier results on this model.
model is a simple stochastic model that explains the law withVe also review the known results for tigemodel of force
fair accuracy. In the case of the directed Abelian sandpildluctuations in bead packs and then summarize our main re-
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sults. In Sec. I, we study the spatiotemporal correlations irtime version is sometimes easier for the purpose of calcula-
the TM in one dimension. In Sec. Il A, we compute exactly tions. We will therefore use either of the two versions,
the equal-time mass-mass correlations between two points imhichever is more convenient in a particular situation. For
space for all times. We also perform a Monte Carlo simula-example, in one dimension we will calculate the mass-mass
tion to compute this correlation function numerically and correlation function with parallel dynamics, while for arbi-
find excellent agreement between numerical and exact rdrary dimensiongl, we will use the continuous time version
sults. In Sec. Il B, we solve exactly the temporal autocorre-as significant simplifications occur in that case.

lation and derive its large time behavior. In Sec. IV, we We now briefly review the earlier results on the TM.
study the spatiotemporal mass-mass correlations in arbitrarffakayasu and co-workef®,14] originally showed that the
dimensions. In Sec. V, we study exactly the spatiotemporabprobability P(m,t) that a site has mass at time t ap-
correlations in the generalizefimodel. We present the ex- proaches a time-independent form in the long time limit
plicit results for the correlation functions in thgmodel —oo. This time-independent distribution was shown to have
when the distribution of transmitted fractions of weights area power-law tail,~m~" for largem and the exponent was
uniform. We also provide numerical evidence for the equalcomputed exactly2] in d=1 (7,4=4/3) and within mean-
time correlations. Finally, we conclude in Sec. VI with a field theory (r,;=3/2). It was also shown that for larga

summary and outlook. and large but finite, the distribution satisfies a scaling form
(16,17
Il. MODEL AND RESULTS 1
m
A. Takayasu model P(m,t)~ - f<t—5) : 2

For simplicity we define the TM on a one-dimensional

lattice with periodic boundary conditions. Generalization towhere the exponent is related tor via the simple scaling
higher dimensions is straightforward. Each site of the latticgelation §=1/(2— ) [17]. Recently Swiftet al. [18] have
has a nonnegative mass variable. Given a certain configurgrgued that ird spatial dimensions;=2(d+ 1)/(d+2) for
tion of masses at time the system evolves via the following <2 andr=3/2 ford>2. In d=2, they argued that in the
dynamics. Evolution at each discrete time step consists Qfmijt t—c, P(m)~m~3¥%logm)*? for large m indicating
two moves:(1) with probability 1/2 each mass hops 10 its that 2 is the upper critical dimension of the TM. It is also
right and with probability 1/2 it stays at the original site and known [2] that the power-law distribution of mass is stable
(2) a unit mass is added to each site. The first move correwith respect to fluctuations in the initial conditions and is

sponds to the diffusion of masses while the second movghsensitive to whether the particles hop symmetrically in
corresponds to injection of unit masses from outside. If thespace or not.

diffusion move(1) results in two masses coming to the same ~ while the single-site mass distribution in the TM is

site, then the total mass at the site simply adds up. Thus, théhown analytically as mentioned above, the spatiotemporal
evolution of the masses is described by the stochastic equgorrelations between masses are far from being understood.
tion, Recently Takayasu and Takayasu have pointed out that while
there exist spatial correlations in TM, they are difficult to
my(t+ 1) =m(O)(1=r)+m_4 (01, +1, 1) compute notF())nIy analytically but even nur?l]ericdjnﬂ]. In
. ) ) o addition there is no rigorous derivation of the upper critical
where ther;’s are independent and identically distributed dimensiond, of the model. While equivalence with the voter
random variables taking values 0 or 1 with equal probabilitymodel would predictl,=2 [5], early numerical simulations
1/2, andm; is the mass at site While the first move(l) 2] suggestedi,=4. The argument of Swifet al. [18] that
tends to create big masses via diffusion and aggregation, the — 5 s also not rigorous as it relied on a scaling ansatz for

second move?) replenishes the lower end of the mass specyhe age distribution of particles, which looked plausible but
trum. The competition between the two, leads in the longyas not proved.

time limit, to a time-independent single-site mass distribu-
tion with a power-law tail for large mass. This happens irre-
spective of the initial condition. For convenience, one can
start from an initial configuration that has zero mass at each The q model was proposefl15,8] as a simple scalar
site. model to understand the distribution of forces observed in
Note that the dynamics of the TM defined above is paral+eal three-dimensional bead pa¢i$]. This model assumed
lel, i.e., all sites are updated simultaneously in every timahat the force chains observed in experiments were due to
step. Alternately one could define the model in continuousnhomogeneity in packing leading to unequal distribution of
time where the mass at every site hops to the right with rateveights supported by a bead. Ignoring the spatial correla-
p and injection of unit masses at every site occurs with ratd¢ions between inhomogeneities, the model considered a regu-
1. It turns out that the large distance and long time behaviorfar lattice of sites, each containing a bead of mass unity. The
of the TM are insensitive to the particular type of dynamicstotal weight on a given bead at a layer is transmitted ran-
used. This is in contrast to other recently studied generalizedomly to 2 nearby beads in the layer undernedththe
mass modelf10,11 where the steady-state mass distributionoriginal version of the modeN adjacent beads were consid-
depends nonuniversally on the type of dynamics. It turns ouéred. Let m(i,t) be the weight supported by a bead at site
that while the parallel version of the TM is convenient for at deptht (t is the layer index Then the transmission of
establishing the mapping to other models, the continuousieights can be represented via the stochastic equation, Eq.

B. The g model of force fluctuations
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(1), where it is assumed, for convenience, that the successive (2) Puttingr =0 limit in the explicit expression fo€(r,t)
layers in thet direction are shifted by one lattice unit to the allows us to compute the on-site varian¢s?(t)) exactly.
right. The injection term one represents the weight of a beaffor larget, we find (m?)~t4* 92 jn d<2, (m?)~t¥/logt
itself (assuming that all beads have the same weight unityin d=2, and(m?)~t3 in d=3. Ford=1, this result was
andr; represents the fraction of the weight that is transmittechlready derived by Takayaset al. [2] but for d#1 it is a
from a given bead to its descendent in the next layer to th&@ew result. This therefore proves rigorously, without any as-
right. The only difference with the TM is that, in the ~ sumption of scaling, that the upper critical dimensite-
model, r;’s are independent and identically distributed ran-Yond which mean-field exponents are corjeaftthe TM is
dom variables drawn from a uniform distribution oyé,1]. dc=2. ) )
Indeed one can study a general stochastic equation such as(3) We also study exactly the normalized unequal time
Eq. (1), wherer’s are independent and identically distrib- correlation function,
uted random variables drawn from a general distribufi
over [0,1] [8]. TM is a special cgse witH(r)z%gz Ar(t,7) = (Xo( DX, (t DY NXGO)(XT(E+ 7)),
+38;1. Similarly theq model with uniform distribution is
another special case whé(r)=1. whereX, (t)=m,(t) —(m.(t)), in all dimensions in the TM.

For distributions of the fornf(r)=r"(1-r)"/B(n+1n  The normalized autocorrelation function is obtained by put-
+1) [wheren is a positive integer an8(m,n) is the Beta  tingr=7/2 in A,(t,7). This is because each mass in the TM
function], Coppersmittet al. showed[8] that the joint prob-  has a net drift velocity equal to 1/2 to the right. We show that
ablllty distribution of the normalized Welght Variableﬁ:i, the autocorrelation fUnCtiomT/z(t,T)"’Tﬁd/zh(T/t) in the
=m;/t, factors in the limitt—o, i.e., P(vy,v2,v3...)  scaling limit, 7—o, t—o but keepings/t finite. In d=1,
=HiP(Ui) ast—o, The uniform distribution falls in this we derive the Sca“ng functioh(y) exphcmy
category as it corresponds to=0. Thus the correlations  (4) We also calculate exactly the correlations between
between normalized weights vanishes in thew limit and  forces at two different pointéoth equal depth and unequal
the single point weight distribution was shown to Bp)  depth in the g model[8] of force fluctuations in bead packs
=a(n)v"" texp(~2m) for all v, wherea(n) is independent  for arbitrary distributions of the fractions of weights. These
of v [8]. Experiments on bead packs measured the forceorrelations have so far not been measured experimentally.
distribution on the bottom layer of the pack-¢=) and the  But if experiments can be performed in the future, then our
results were found to be in agreement with thenodel re-  exact results will be useful for validation of tteemodel.
sults withn=0, i.e., with uniform distributionf (r) =1 [15].

While the spatial correlations between the normalized
weights vanish in the—oo limit, they are expected to be lll. CORRELATIONS IN ONE DIMENSION
nonzero at finite depth. We will show later that Claudin
et al.[19] stated incorrectly that for the uniform distribution,
the correlation is zero at any finite depth. Claudiral. also
calculated 19] the equal-depth correlation function in a con-
tinuum version of they model for generic distribution of the L . X
fractions and found a rather structureless correlation funcpmba.b'“ty distribution fu_nctlorP(mll,mzl,t), the evolution
tion. This is not surprising because they made the assum’f-quat'on for the two-point gorrelatloin 'nYOIV?S. only other
tion that the beads are massless. Our exact calculation for t }Q’Ok p0|rrl1t correllatlpn ;unct!ons. T?'S. slllmpllfylng | aspecat
discreteq model in this paper shows that for nonzero bea m'f;l‘ es the correlation function analytically tractable in the
mass, the equal-depth correlation function has a very inter- " . . . . .
esting scaling behavior characterized by a universal scalinp The parallel dynamics of th? TMin one dimensidm) is
function that is independent of initial conditions for short- epresented by the stochastic equatidj nam_ely, mi(t
ranged initial conditions. Besides, we also compute exactl S D=mO@ =) Fmi_y (ri_, +1.1fr;=1 at timet, the
the nontrivial temporal correlations between masses in th assm; at sitei jumps to its right neighbor while;=0

vertical direction. These temporal correlations have not beer'(.:itis. th;t I S.tgyj zgt s;t}e‘l’fhe hopplnghg)lf thhe mass a(; site
computed for they model before. 1tol is described by the first term while the second term

accounts for the mass at-1 hopping onto siteé. The last
term 1 indicates the injection of unit mass from outside at
every timet. Averaging Eq.(1) over all possible histories
The new results that we obtain in this paper can be sumgstarting from a zero-mass initial configuratjone immedi-
marized as follows: ately get(m)(t)=t.
(1) For the TM, we calculate exactly the equal-time
mass-mass correlation functionC(r,t) =(mg(t)m,(t)) . o ) )
—(m(t)){m,(t)) between two spatial points separated by a A. Equal-time correlations in one dimension
distancer in all dimensions. We show that in the scaling The evolution equation for the equal-time correlation
limit r—o, t—oo but keeping r/\t fixed, C(r,t) function between two space poinitsand j can be written
=—t"G(r/\t), wherey=2 for d<2 andy=(3—-d/2) for  down by multiplying Eq.(1) by m;(t+1) and then taking an
d>2 and the scaling function depends @nin d=2, there  average over all possible histories. Due to the translational
are additional logarithmic corrections. ¢+ 1, we also com- invariance in an infinite lattice, this correlation function de-
pute the scaling functio®(y) explicitly. pends only on the difference—j|. Denotingx=i—j and

In this section, we calculate exactly the spatiotemporal
correlation function in the TM in one dimension. Even
though the evolution equation for the single point probability
distribution of massP(m,t) involves the joint two-point

C. New results
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using the translational invariance, we find the connected par 1 . . .

ling f
of the correlation function at timg, C,(t)=(mg(t)m,(t)) scag%ggg o
—t2, obeys the equation, 08 W T 8
1=8192 —
1 06 L t=32768 -
C(t+1)= 7 (Cya+2C,+Cy1) o |
1 2 02
+ 7 (Cott) (2050 1= O -1)- (9 '
0 -
In obtaining the above equation, we have used the fact that 0

andm; at timet are independent of each other for iadindj.
Equation(3) can be solved exactly for arbitrary initial con-
dition by the generating function method. It turns out, how- FIG. 1. The figure shows the scaling plots of the equal-time
ever, that the solution at large tiliecomes asymptotically correlation functionC,(t)={m(0,t)m(x,t))—t? obtained from nu-
independent of the initial condition as long as the initial con-merical simulation of the TM on a one-dimensional lattice of 1000
dition is short ranged. Without any loss of generality, wesites. The data for five different times collapse onto a single scaling
therefore start from the simplest initial condition when thecgrve that matches very well with the analytical scaling function
mass is 0 at every site. L&t(q,u)=35_;3; ,C,(t)g*u'.  given by Eq.(12).

Multiplying Eq. (3) by g*u! and summing ovex andt, one

can express(q,u) in terms of C;(u)=3;_,C,(t)u! and C,(u). We first deriveCy(t) explicitly by computing the
Co(u)=37_,Co(t)u'. C4(u) can further be expressed in coefficient ofu' in the expression o€y(u) in Eq. (5),

terms ofCo(u) from Eq.(3) by puttingx=0, multiplying by

u' and summing ovet. Thus, finally we get the following 2t(2t+1)(4t+1) (2)!
expression folF (g,u), Co(t)= yor (1) —t2. (8)
qlu*(1+u)(1—q)—2(1—u)*Co(u)]
Flq,u)= (1-u)¥[4q—u(1+q)?] (4 This therefore gives us an exact expression for the on-site
a a mass varianc€(t) for all t. Taking the large limit in Eq.
~ . . = (8) we get,
whereCy(u) is yet to be determined. We determi@g(u)
by noting that F(gq,u) has two poles g;,=(2—u
+2./1—u)/u. For positive values ofi, |g;|>1 while |qg,| 16t52 5
<1. This would imply that for fixed timeC,(t) will blow Co(t)= 15\/;+O(t ) ©)

up exponentially agg,| > for largex. Since this cannot hap-
pen, the numerator on the right-hand side of E&. must
also vanish atj=q, in order to cancel the pole. This imme- We note that since Eq2) implies that(m?)~tG~ /(=7

diately determine€,(u), we getr=4/3 in one dimension. This therefore constitutes an
alternate method to derive=4/3 in one dimension.
In order to deriveC,(t) for x>0, we need to calculate the
~ u(l+u)(1—y1—u . X b .
Co(u)= ( X - ) ) (5)  coefficient ofu' on the right-hand side of Eq7). For arbi-
(1-u) trary x, this is somewhat hard. However it is easy to derive

5 the asymptotic behavior of,(t) for largex and larget but
Substituting Co(u) in Eq. (4), the generating function keepingx/y/t fixed. By takingu— 1 limit in Eq. (7) and after

F(q,u) is then fully determined, a few steps of algebra, we find that in this scaling limit
—u(l+ ~ n
Fau=— g 3 [ ] Ct)=—B(X/\D), (10)
(1—u)® =1\ (1+41
~ " . . « where the scaling functio®(u) is universal, i.e., indepen-
Let us denote,(u) =2 ,Ci(t)u". The coefficient o for  gen of the initial condition as long as the initial condition is
x=1 can be easily pulled out from E() to yield short ranged and is given by
~ —u(1l+u) u*
Cuu)= (7

(1-u)® (1+1—-u)®

Note that it is evident from the above expression Bgit)
=0 for x=t. The complementary error function is defined as, affc(

In order to derive the explicit expressions fox(t) for =(2/\/F)f;°exp(—x2)dx The above integrals can be done to
x=0, we need to invert the discrete Laplace transformglerive an explicit expression for the scaling function,

G(y):32f dxlf dxzf dng dx, erfax,). (11)
y X1 X2 X3
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1 2 ) In order to calculate the autocorrelation function, we note
G(y)=—| (83+12y?+4y*erfay) — —y(5+2y?)e V"|. that in the TM, the masses have a net drift velocity; 1/2
3 \/; towards the right. This is because of the definition of the
(12 model: in one time step, a mass either stays at its own site

with probability 1/2, or hops to the neighbor on the right
We also performed a numerical simulation of the TM on awith probability 1/2. Thus, to calculate the proper autocorre-
one-dimensional lattice with periodic boundary condition. Inlation function, one has to compute it in the moving frame
Fig. 1, we show the scaling plot of the connected part of theéhat is shifting towards the right with uniform velocity 1/2.
correlation function. The data at different times, when scaledHence the correct auto-correlation function would be given
as in Eq.(10) collapse onto a single scaling function, which by D 5(t, 7). Puttingx= 7/2 in Eq.(16) and taking the trans-
Eqin(f;)cellent agreement with the analytical result given byform D, ,(u, 7)== ,D,(t, 7)u!, we get

- 10 7\ . T\
B. Temporal correlations in one dimension D (U, 7)=— ( )Co(u)Jr2 > ( )Cm #2(U)
27|\ 7/2 m=72+1 \M

In this section we compute exactly the two-time correla- 17)
tions in the TM in one dimension. Let us first defiXg(t)

=m,(t) —(my(t))=m,(t)—t. We then define the general where we have used the symmety(u)=C_,(u). Using

two-time correlation function aB(t, 7) =(Xo()X(t+ 7). ha ayact expressions f@(u) from Egs.(5) and(7) of the

Itis qlso useful to define the normalized two-time correlatlonpr(_)vious section in Eq17), and after some steps of algebra,
function, we get

(Xo()Xx(t+ 7))

A(t,7)=

Clearly then, A,(t,7)=D,(t,7)/JCo(t)Co(t+7) where u(1+u) N TAWINY
S e, s
i/ \4
also used the translational invariance of the equal-time cor-

- > . (13 5 _ 1 7iu(l+u) u(l+u)
\/<X0(t)><xx(t+7)> T/Z(U’T)_;r 712 (1_u)7/2_ (1_u)3u7-/2
Co(t) is just the on-site mass variance whose exact expres- PR
sion is given by Eq(8) of the previous section and we have (I-u)>um™ i=o
relation function. Thus we just need to evaluddg(t,7)  Where we have used the combinatorial idenfig],
which can be done exactly as follows.

From Eq.(1), it is easy to show that the functidd,(t, 7) n K _(A+k" &/2 n| (A-k@a-k"*
evolves as a function of for fixedt as, j=n2+1 \ ] 2 2 \n/2 2
Dy(t,7+1)=3[Dy(t,)+Dy 1(t, D], (14) S (2i ) 9
=0 i\ (1+k)?)

starting from the initial conditionD,(t,0)=C,(t), where
C,(t) is the equal-time correlation function computed al-
ready in the previous section. LetH(k,t,7)
=37 _,.D,(t,7)e'*. Note that here we used thesumma-
tion from —oo to «© as opposed to 0 te. This is because
D,(t,7) is not equal toD _,(t,7) for 7>0. They become
equal only forr=0 due to translational invariance. From Eq.

In order to analyze Eq18), we first putu=1—s and note
that the equation allows a scaling limit wher-0 and =
—oo, but the productsT remains fixed. In terms of time
variables, this scaling limit correspondste-~, t—w but
keeping the ratior/t fixed. In this limit, we find

(14) we get - 1
1 K\ - DT/Z(SY T) = ?gl(ST)v (20)
H(k,t,r)=H(k,t,0)< 5 ) . (15
where the scaling function is given by
Note thatH(k,t,0)==7___C,(t)e'** andC_,(t)=C,(t) as
translational invariance holds for equal-time correlation 811 77 y
) g(y)=\/— | —=—\/=eerfc \/=||. (21
functions. 7|y 2 2

By inverting the Fourier transform in E@15), we get a
simple expression foD,(t,7) in terms of the equal-time

; _ In terms of time variableg andt in the scaling limit, 7
correlation functions,

—o andt—oo, but keepingr/t fixed, we get the following
expression by inverting the Laplace transform in E2f),

16\/2\fh7-
157 V7 "Mt

1 (2= _
Dx(t,r)zzfo dkH(k,t,7)e kx

D,,(t,7)=t2 : (22)

1 4 (7
o mE:O (m) Cx-m(t). (18 where
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A. Equal-time correlations

_ \y(10+3y)
V2(1+y12)?

L2
hl(y)— T 6sin

: From the Eq.(26) of evolution of the masses, one can
easily write down the evolution equation for the two-point
(23)  correlation function in continuous time. Multiplying E6)
) . at two different space points and neglecting terms of order
Using the above result and the exact latgeehavior of  o(At2) and higher, we find that the two-point correlation
Co(t) from Eq.(9) in Eq. (13), we finally obtain the scaling  function ~ C({x},t)=(m(0, ... ,00)m(Xy, ... Xq,t))—t2,
behavior of the normalized autocorrelation function in thegyglves as
scaling limit mentioned above,

1
V1+y/2

d d
&C({x})=—2pdC({x})+pZ 2, CXp, ..., X]
=1 m=+1

1 T
AT/Z(tYT)z _h(_) ’ (24)

Jro\t

where the scaling function is given by,

+m, ... ,Xd)+ 5)(1’0' N 5Xd’o+ p(C({O}) +t2)

x| 2d8, o - 50

2 1 5\2y
h(y)= \ﬁ 5/4[ 1-—5-(1+yl2)? C
1+ 32
m(1+y) —]Zl S0 O =1 Bxy0) 27
1 \y(10+3y)

1

x| 6sin”

— | . (29 where we have suppressed théependence o ({x},t) for
1+y/2 \/5(1+y/2)2 ] notational convenience and also used a transl{at}ional invari-
) ance of C({x},t). The Fourier transform G({k},t)
The function h(y)—+2/m as y—0 and h(y) —s= _.CUx))exp(z2_kx) then evolves as,
~/(8/497y~¥*asy— . Thus, for largey, the scaling func- b =
tion decays as a power law with an exponent 9/4. d )
We remark that the above scaling behavior holds only in aG({k})ZZD[G({k})_C({O})_t ]
the limit whenr—oo, t—oo but the ratior/t is kept fixed. In
other limits, it is also possible to investigate the detailed
behavior of the autocorrelation function by analyzing the ex- X

act equation(18).

+1. (28)

d
—d+2, cogk))
i=i

Taking the Laplace transform with respecttfave get
IV. CORRELATIONS IN ARBITRARY DIMENSIONS

d
In this section we study the two-point spatiotemporal cor- s?+2p[s°gy(s)+2] d— 2, cogk;)

relations in the TM in an arbitrary spatial dimensidnAs F({k},s)= = =1 '

mentioned in Sec. Il, it turns out that for genedakquations 3

for the correlations simplify considerably for the continuous s°1 s+2p|d— 21 Coiki)“

time version of the TM. In this version, every mass hops : (29)

with ratep to each of itsd nearest neighbors in the positive
direction, and aggregates with the mass present at the hopp@ghere F({k},s)=[5G({k},t)e sdt and go(s)

site. In addition, injection of unit mass occurs at every lattice= 1>c(o, . .. ,0f)e~S'dt, which is yet to be determined.
site with rate 1. _ We determine go(s) by noting that go(s)
_ Th_e evolution of the mas®i(x4,X,, . .. Xq,t) in a small :1/(2W)df(2)w_ ) -fé“F({k},s)dkl- ..dky. Integrating Eq.
time intervalAt can be represented by the equation, (29) with respect to thé's we get the following expression
; for go(s),
m({Xi},t‘f‘At):jgl rj_m(Xl, ...,X]'_l,...,Xd,t) 1 ) 2
go(s)= g(s —2s+ ®> , (30)
+11 J_Z,l r| )m({x,},t)+l({x,},t), where
(26) 1 2w 2w 1
I(s):—df dk1~--f dky g .
wherer,“’s are independent and identically distributed vari- (2m)"Jo 0 s+2p|d— 2 Cos{kA)}
ables, with distributionf(r)=pAtd, ;+(1—pAt) S, o and j=1 .

indicate the hopping events of the particles. The random (31)
variablel ({x;},t) denotes the event of injection and is drawn

from the distributionP(1)=Atd, ;+(1—At) 4, o indepen- The smalls behavior ofl(s) can be easily evaluated by
dent of ther;*’s. analyzing the integral in Eq31). We find that as—0,
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I(s)~s (=92) for d<2, F(kq,k,S)
~—log(s) for d=2,
~const for d>2. (32 2 m(s+4p)

s S3K[4pl(s+4p)]{s+2p[2—cogk,)—cogk,)]} "

Substitutingl (s) in the expression fogg(s) in Eg. (30) and
inverting the Laplace transform, we find that the on-site vari- (36)
ance for largd behaves exactly as,

After some straightforward algebra, it turns out that the large

C(0,...,0n)~t*" 42 for d<2, distance behavior o€(x,y,s)=[5C(x,y,t)e 't is given
{3 by,
Nlog(t) for d=2,
~t3 for d>2. (33) By, 5= “(stap) (ﬁ) -
7 28 pK4pl(s+4p)] L P )

Note that the results in Eq433) are exact results for large

and does not assume any scaling behavior. This result clearl . . .
provesrigorously that the upper critical dimension of TM is wherer = x2TyZ and K, is the modified Bessel function

d.=2 [20]. In order to get an explicit expression 6f(x,y,t) for
c=2.

In addition, if we assume that the on-site mass distributiort‘rger andt, one n_ee_ds to ir_lvert the Lapl_ace transf(_)rm given
scales a®(m,t)~m~"f(mt" % for largem and larget, we y Eq. (37). But it is obvious from this expression that

get the following results forr and 5. The first momentm) Q(x,y,t) will no Iong_er ha.ve. a nic.e scaling_ form .in the large
~t gives §=1/(2— 1) [17]. The second moment scales asdlstance and long-time limit as in one d'“_‘ensme EQ. .
(m?)~t3=7%_ Using the exact results for variance from Eq. (10 due to the appearance of logarithms in the asympiotic
(33), we getr=2(d+1)/(d+2) for d<2, r=3/2 for d beh{:\wor of the func't|onK(.x) andKo(x). This y|olat|on o_f
~2. andr=3/2 ind=2 with additional logarithmic correc- scaling due to logarithms is again expected since two is the

tions. These results for are in agreement with the results upper critical dimension of the TM.
obtained by Swiftet al. [18] by using a more indirect map-
ping to the age distribution of particles in a related reaction-
diffusion process and also assuming scaling behavior.
With go(s) completely determined, we therefore have an  We can write down the equ_atiqns for the time evo!ut!on of
exact expression in Eq29) for F({k},s), the joint Laplace- the tgmporal correlat!on function in a manner very S|m|Iar to
Fourier transform of the full correlation functid®({x},t) in ~ that ind=1. We define the connected correlation function
arbitrary dimensions. For arbitrarg, it is complicated to @S Dy . x(L7)=(mo  dt)m, i (t+7)—t(t+7).
invert this transform to obtain an exact expression forFrom the evolution equation of the masses, it is easy to show
C({x},t). However, by analyzing the smadl and smallk that the functiorD,(t,7) evolves as a function of for fixed
behavior ofF({k},s), it is easy to see that for largeand t as,
larget, but keepingxt™ 2 fixed, C({x},t) satisfies a scaling

B. Temporal correlations

d
behavior,C({x},t) ~t"G({x;/\t}) with y=2 for d=1 and d B
y=(3—d/2) for d>2 and the scaling functioG(y) de- a7t =p ;1 (D=1 x(B7)
pends explicitly ond.
For d=2, there is additional logarithmic correction and —dDyy(t, 7)), (38

the scaling breaks down. In this case, the exact expression

for 1(s) is given by ) o N

starting from the initial conditiorD,,(t,0)=Cy,(t) where
Ciq(t) is the equal-time correlation function. Let
H({K}t, 1) =S {2 Dy (t, D) expEi_gik;x;). From Eq.(38)

K[4p/(s+4p)], (34) we immediately get

1= w(s+4p)

whereK is a complete elliptic integrd20]. This gives an d
explicit expression fog(s), H({k},t,7)=H({k},t,0)exp< pr (e”‘i—l)), (39)
=1

s+4 1
( 9)) +1

s*K[4p/(s+4p)] s (39

9o(s)= whereH ({k},t,0) is the Fourier transform of the equal-time
correlation function.
We invert Eq.(39) to get the temporal correlations in

Substituting the expression fgp(s) in Eq. (29) we get, terms of the equal-time correlation functions,

S3
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d
1 27
Dy(t,7)= d9kH({k},t, —i > kx|,
pa(t,7) (Zw)djo ({k} r)exp( |j§=:1 ij>
eprd 2m d
= d% —i KiXi
2milo ex;{ I,Zl ij)

oo d
X > C({x’},t)exp(iz ijj’)
=1

X}=—o
(40)

d
Xexp( pry, e“‘i) .
=1

As ind=1, there is a net drift velocityp, in each for-

ward direction. Hence the correct autocorrelation function i

given byDy,4(t, 7). Puttingx;=p7 in Eq. (40), and simpli-
fying, we get

Dipa(t,7)= > C(pr—my, ..., pr—my)
{m}=0
(41)

It can then be shown that in the scaling limit,> o, t—o
but keepingr/t fixed, the normalized autocorrelation func-
tion allows for a scaling solution as =1,
1 T
A{pf}(t,T)th ? . (42)

We do not present the explicit form of the scaling function

here. It can be shown th&i(y)— const. asy—0. Thus in

arbitrary dimensions, the asymptotic decay of the normalized

auto-correlation function is given by %2 for large = (after
taking the largé limit).

V. CORRELATIONS IN THE g MODEL OF FORCE
FLUCTUATIONS

EXACT CALCULATION OF THE SPATIOTEMPORAL . ..

3193

for all points in the planeu;> u,, the correlation function
has once again the same universal asymptotic behavior re-
gardless of the actual values @f and u, but this behavior
is different from the behavior on the ling;=pu,. The q
model with uniform distribution corresponds to the point
mn1=1/2, u,=1/3 and therefore falls in the second category.
Since the steps of the calculation follow closely that of the
TM, we will skip most of the details and present only the
final results.

A. Equal-time correlations in one dimension

Starting from the stochastic evolution equatidty. (1)]
of masses id=1, it is straightforward to write down the
evolution equation for the equal-time correlation function

SCx(t) =(m(t)m,(t))—t?. We find that for general distribu-

tion f(r), the equal-time correlations evolve as
Cu(t+1)= (1~ s (Cxrat Comn) + (1= 21+ 2u1) Cy

+ (2= 11°)(Cott2)(28y 0= 81— Sy 1),
(43)

where u,=[erf(r)dr and u,=fgr?f(r)dr. Note that for

the TM, u,=1/2 and u,=1/2 and then Eq(43) reduces

exactly to Eq.(3) studied in Sec. Ill A. For the uniform dis-
tribution, f(r)=1, one getsu;=1/2 andu,=1/3.

We can solve Eq(493) for arbitrary initial condition and
arbitrary parameterg, and u,. It turns out that the depen-
dence on the initial condition drops out for asymptotically
larget. Following the same steps as in the TM in Sec. Il A,

we find that the Laplace transforn®,(u)=Z3;_ ,C,(t)ut,
are given exactly by

u(1+u)[V1+(4a—1)u—1—u]

c -
o) (1-u)°gs(u)

. (49

J1+(da—u—1-u|*

V4au ’

(45)

. o—u(l+ u)
(1-u)®2g,(u)

Cy(u)

Theg model of force fluctuations has been defined in Secyyhere g,(u)=[(a—b)/by1+(4a—1)u++1—u] and a

[IB. In this model, the variables; evolve in time via the
stochastic equationm;(t+1)=(1—r;)m;(t)+r;_m;_4(t)

+1, where the random variablas's are drawn indepen-
dently from a arbitrary distributiorf(r) over the support

[0,1]. Experimental results for the force distribution in real

=u1— u,” andb=pu,— % It is clear from the above ex-
pressions that the asymptotic behaviors for latgeorre-
sponding tau—1) depend on whether=Db, i.e., w,= u, or
a>h, i.e., wi>uo.

For w,=u,, we find, after inverting the Laplace trans-

bead packs were found to be described accurately byjthe ¢;.ms that for large

model with uniform distributiorf(r)=1 [15].

In this section, we calculate exactly the two-point corre-

lations betweem;’s for the generalized model, i.e., for any
arbitrary distributionf (r). It turns out that the two-point cor-
relations are characterized by two parameters;
=[orf(r)dr and w,= [3r2f(r)dr with w,=u,. In the u;

= u, plane, there are two types of asymptotic behaviors de-

pending on whethep,=u, or w,>u,. At every point on

32\a
Co(t) =——=12 t>1,

(46)
C,(t)~—1°G L) x,t>1 (47)
X \/4_at L) ) )

the line u,= u,, the correlation function has the same uni-

versal asymptotic behavior independent of initial conditionswhere the universal scaling functigg(y) is given by Eqg.
as long as they are short ranged. The special case of the TM2) as calculated for the TM.

with uq= u,=1/2 falls within this class. On the other hand,  For w;> u,, on the other hand, we find for large
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o7 : ' ' scaling fo ] mass is nonzergequal to 1) as opposed to the zero-mass
s N\ =128 | case considered in ReflL9]. As seen from our analysis, for
R Ezg%g ---- nonzero mass, the correlation function has a much more non-
051 % t=32768 - - -7 trivial and universal structure as opposed to the rather struc-

tureless correlations found in the zero-mass case in[Ref.

Rescaling time by the facta, one sees that E¢51) is
parameterized by the single variable=b/a. As in the dis-
crete case, there are two possible asymptotic behaviors de-
pending on the value of. ForA=1, one finds the Takayasu
type behavior and a completely different asymptotic behav-
ior emerges for alN<1.

—Cg;(t) 04
t3/2 0.3 -

02

0.1}

. . . B. Temporal correlations in one dimension
FIG. 2. The figure shows the scaling plots of the equal-time P

correlation functionC,(t) =(m(0,t)m(x,t))—t2 obtained from nu- The two-time correlations can similarly be computed for
merical simulation of they model on a one-dimensional lattice of the g model for any arbitrary distributiofi(r). We present
1000 sites. The data for five different times collapse onto a singldiere only the explicit results for the uniform distribution in
scaling curve that matches very well with the analytical scalingd=1.

function given by Eq(50). For two-time correlations we use the same notation as in
the TM [see Sec. Il B. For the uniform distributionf(r)

=1, we find that in the scaling limit—o~ andt—o, but
keepingr/t fixed, the normalized autocorrelation function, as
defined in Eq(13), has the scaling behavior

b
Co(t)~ﬁt2, t>1, (48)

Cy(t)~— %G,

_ X 1 T
\/;(a—b) \/E) , X,1>1, (49 A p(t,7)= Thz(;) , (52

where the universal scaling functid@d, (y) is given by . .
where the scaling function is given by

2(2e7 Y (1+y?)
G (Y)=—<— 2 1
' 3 Jm hy(y)= \/;3(1—+y)[3_2\/§(y+2)3/2+6y+2y2]'

Note that the uniform distribution corresponds gq=1/2 (53

andu,=1/3,i.e.,a=1/4 andb=1/12. In Fig. 2, we compare

the numerically obtained scaling plots for the uniform distri- The scaling functiorh,(y)— \2/m asy—0 as in the TM.
bution with the exact scaling function given by H§0). For _largey also, hy(y) decays as a power lawhy(y)

If we define the scaled weiglt=m/t as in Ref[8], then  ~\2/97y~ 2 as in the TM but with a different exponent two
the connected part of the two-point correlationsthan for the TM exponent 9/4.
(v(0)v(x,t))—1=—t"Y2G,(x//4at) for large x and t.

Clearly ast—x, the scaled weighit’'s get completely un- C. Resullts for arbitrary dimensions

correlated but for finite deptfor time) t, there is a nonzero Followi he similar i f i the TM. th

anticorrelation specified by the scaling functi@p(u) which oflowing t € simiiar fin o arguments asin the . the
?volutlon equation for the two-point correlation function can

might be possible to measure experimentally. We also pOIr]be derived for the generalizegl model in arbitrary spatial

out that the statement of Claudit al, [19] that for the i . i di ; d i The di ;
uniform case the correlation is zero at any altitugles \imension wi ISCrete space and ime. The discrete equa-
tions are rather complicated but the asymptotic properties

clearly incorrect. can be easily derived by taking continuum space and time
We note that from Eq(43), one can easily derive the ;7. ) 2 .
a(43) Y limit. In the continuum limit, it turns out that as =1, the

evolution equation for the correlation function in the con- . . . .
d Fourier transform in any dimension G({k;},t)

tinuum space and time. For a proper continuum limit in time,” = q .
we need to assume that bath-aAt andb—bAt are of —J—=C({Xi},)exp(Zkx;)d’x evolves by the simple equa-

order At. Defining the Fourier transform G(k,t) tion (51) parameterized by the rativ=Db/a, once time is

= [*_C(x,t)e**dx, one finds from Eq(43) that for smallk rescaled bya. The parametex<1 as in the discrete case. As

the correlation function evolves via the equation, in the TM, tak|r_ng the Laplace transform of E(p1) with
respect ta, we find

. (5D MK2[2+go(5)S%]

FkLS) = —anare TESE (54)

—y(3+2y?)erfay) ) . (50

!

(c?t+ak2)G(k,t)=bk2( f %G(k’,t)ﬂz

Note that this equation above is identical to the one derived

by Claudinet al.[19] except for the additiond?t? term on ~ Where  F({k},s)=[G({k},t)e *'dt  and  go(s)
the right-hand side of Eq51). The origin of this additional = f§C(O0, ... ,0t)e”S'dt, which is yet to be determined. As
term can be traced back to the fact that in our case, the bean the TM, go(s) is determined by integrating E¢54) with
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respect tk. Note that the upper cutoff of eadhintegration  Takayasu model of mass aggregation and injection in all
is now set by 2r/ A whereA is the lattice constant. We find dimensions. We have identified different scaling limits and
obtained the scaling functions explicitly ob=1. Our exact
go(s) = 327‘[1_S|(S)] (55) results for the on-site mass variance prove rigorously, with-
s 1=N+Asl(s)]’ out any assumption of scaling, that the upper critical dimen-
sion of the Takayasu model &.=2.

We have also extended our technique to compute exactly
the correlations in a larger class of aggregation models with
injection. This generalized model includes, as special cases,

s behaviors ofgy(s) depending on whethex=1 or A <1.

The TM corresponds ta =1 and its asymptotic behaviors the Tgkayasu model a.nd also thenodel of force fluctua-
have already been discussed in detail in Sec. IV. Here wions in granular materials. We have shown that the correla-
focus onA<1. In that case, using the smallbehavior of tion functions in this generalized model is parameterized by

I(s) in Eq. (55), it is clear thatgy(s)~2\/s® in any dimen- two variables f,,u,) which are, respectively, the first and
sion, indicating thaC(0,0, . . . ,0t)~t? for larget. Thus for  the second moment of the distributié(r) of the fractions
A<1, contrary to thex=1 case(TM), there is no critical 'i'S- We have shown that in the two-dimensional parameter

dimension separating different asymptotic growth ofspace fu1,uz) With wi=u,, there are two types of

wherel (s)= fd%/(k?+s). The smalls behavior ofl(s) is
the same as given by E32).
From Eq.(55) it is clear that there are two different small

C(0,0,...,0t). asymptotic behaviors of the correlation function depending
Substituting this expression fa(s) in Eq. (54), we find ~ on wWhetheru;=pu, or u;>pu,. For generic points in the
that for smalls region u,> u,, which includes the uniform distribution rep-

resented by (1/2,1/3), the correlations have similar

2\k? asymptotic behaviors, which is different from that on the line

F({k}.s)~ (1—)\)s§(k2+ s)’ (56) M1= Mo, Which includes the Takayasu model. Besides, for

Mm1> 1o, there is no upper critical dimension in contrast to
It is then not difficult to derive the asymptotic properties of the caseu;=u, where the upper critical dimension &,

the correlation function in real space and time. We find, =2. We have presented explicit forms of scaling functions
5 for both the Takayasu line as well as the experimentally rel-
C{0})~t% t>1, (57) evant uniform distribution case. These exact results will be
useful for comparison with possible future experimental re-
X : :
_+(2-d12) x S sults on correlations in bead packs.
Cixh0 t Gl( \/f) X1, (58) In this paper we have calculated exactly various time-

dependent correlations between forces in bead packs in the
whereG;(y) is the dimension dependent scaling function. context of the simple scalay model. There have been vari-
The most important result of this subsection is that whileous generalizations of this scalar model to include the tenso-
for \=1, there is an upper critical dimensidp=2 separat- rial nature of the force$19,21 and also to noncohesive
ing different asymptotic growth of the on-site variance, theregranular material§22]. It would be interesting to see if our
is no such critical dimension fox<<1 (which includes the method can be extended to calculate the correlations in these
uniform distribution of fractions for thg mode). generalized models.

VI. SUMMARY AND CONCLUSION
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